Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber

نویسندگان

  • B. Nagaraju
  • R. K. Varshney
  • Govind P. Agrawal
  • Bishnu P. Pal
چکیده

We analyze the interplay of nonlinearity and dispersion in a dispersion-decreasing photonic bandgap Bragg fiber as a new platform for generating parabolic pulses. A suitably designed linearly tapered, low-index-contrast, solid-core Bragg fiber – amenable to fabrication by conventional modified chemical vapor deposition technology – is shown to yield stable parabolic pulses. The fiber design was optimized through a simple and accurate transfer-matrix formalism and pulse evolution was studied by the wellknown split-step Fourier method. Our study revealed feasibility of generating parabolic pulses in such a dispersion-decreasing Bragg fiber of length as short as 1 m. We have also studied the effect of third order dispersion on generated parabolic pulse, which is an important deteriorating factor in such applications. The effective single-mode operation of the proposed device is achieved through appropriate tailoring of the outer cladding layers. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping

Chirped cladding is proposed as a novel tailoring tool to simultaneously attain wider transmission window and reduced temporal dispersion in an all-solid Bragg-like microstructured optical fiber as compared to its perfectly periodic cladding counterpart. This design route for photonic bandgap microstructured fibers could be exploited as an additional degree of freedom for bandgap engineering. A...

متن کامل

A 158 fs 5.3 nJ fiber-laser system at 1 microm using photonic bandgap fibers for dispersion control and pulse compression.

We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtained with a hollow-core photonic bandgap (HC-PBG) fiber.

متن کامل

Single-mode grating reflection in all-solid photonic bandgap fibers inscribed by use of femtosecond laser pulse irradiation through a phase mask.

Single-mode Bragg grating reflection has been achieved in all-solid photonic bandgap fibers by use of femtosecond laser pulse irradiation through a phase mask. The grating created is confined to the all-silica fiber core region and exhibits higher thermal stability than other type I femtosecond-pulse-induced gratings.

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Compression of optical pulses spectrally broadened by self-phase modulation with a fiber bragg grating in transmission.

We demonstrate experimentally the compression of optical pulses, spectrally broadened by self-phase modulation occurring in the rod of a mode-locked Q-switched YLF laser, with an unchirped, apodized fiber Bragg grating in transmission. The compression is due to the strong dispersion of the Bragg grating at frequencies close to the edge of the photonic bandgap, in the passband, where the transmi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010